
一文讲透 AI Agent 与 AI Workflow 的区别和深度解析:从自动化到智能化的演进
大家好,我是花哥。本文我们谈下火爆的大模型背后,有哪些的核心技术!
Transformer 是大模型的底层模型。在深度学习的早期阶段,循环神经网络(RNN)是处理序列数据的常用方法。尽管RNN及其变体在某些任务上表现良好,但它们在处理长序列时容易遇到梯度消失和模型退化问题。为了解决这些问题,Transformer模型被提出。而后2020年 OpenAI首次提出“规模定律”,指出模型的性能随着参数量、数据量、训练时长的指数级增加而呈现出线性提升,并且该提升对架构和优化超参数的依赖性非常弱[7]。从此研究人员逐步转移研究重心至大语言模型基座,并开展了大量相关研究。基于Transformer的GPT、Bert等大模型在各种自然语言处理任务上取得了突破性的成果,包括文本生成、机器翻译、问答等,并展现了在零样本和少样本情况下的泛化性。
Transformer模型精巧地结合了编码器和解码器两大部分,每一部分均由若干相同构造的“层”堆叠而成。这些层巧妙地将自注意力子层与线性前馈神经网络子层结合在一起。自注意力子层巧妙地运用点积注意力机制,为每个位置的输入序列编织独特的表示,而线性前馈神经网络子层则汲取自注意力层的智慧,产出富含信息的输出表示。值得一提的是,编码器和解码器各自装备了一个位置编码层,专门捕捉输入序列中的位置脉络。
Transformer模型的修炼之道依赖于反向传播算法和优化算法,如随机梯度下降。在修炼过程中,它细致地计算损失函数对权重的梯度,并运用优化算法微调这些权重,以追求损失函数的最小化。为了加速修炼进度和提高模型的通用能力,修炼者们还常常采纳正则化技术、集成学习等策略。
Transformer模型在自然语言处理领域的应用可谓广泛,涵盖机器翻译、文本分类、文本生成等诸多方面。此外,Transformer模型还在图像识别、语音识别等领域大放异彩。
# 这里放置Python示例代码
严格意义上讲,GPT 可能不算是一个模型,更像是一种预训练范式,它本身模型架构是基于Transformer,再通过海量的大数据下进行预训练 ,使模型能够学习到数据的通用特征。这种技术广泛应用于计算机视觉、自然语言处理等领域,并为后续的特定任务提供了强大的基础。
大模型预训练技术的核心原理在于通过大规模数据的预训练来提取丰富的语言知识和语义信息。在预训练阶段,模型利用自注意力机制捕捉文本中的上下文信息,并通过学习大量的文本数据,逐渐理解语言的规律和结构。这种学习方式是自监督的,模型能够自我优化和改进,从而提高其对文本的理解能力。在微调阶段,模型会根据具体任务的需求进行有针对性的调整。通过有监督学习的方式,模型在特定数据集上进行训练,以优化其在该任务上的性能。这种微调过程使得模型能够更好地适应不同任务的需求,并提高其在实际应用中的效果。
大模型的预训练技术的训练过程主要分为以下几个步骤:
RLHF(Reinforcement Learning from Human Feedback,基于人类反馈的强化学习)RLHF是一种结合了强化学习和人类反馈的调优方法,旨在提高大模型在特定任务上的性能和可靠性。
RLHF的原理在于将强化学习与人类反馈相结合,通过人类的判断作为奖励信号来引导模型的行为。传统的强化学习依赖于环境提供的奖励信号来进行决策,而RLHF则利用人类对于模型输出的反馈作为奖励信号,使模型能够学习到更符合人类价值观的行为。在RLHF中,人类反馈的作用至关重要。通过人类对模型输出的评价、标注或排序等方式,可以为模型提供关于其行为的直接反馈。这种反馈可以告诉模型哪些行为是受到人类认可的,哪些行为是需要改进的,从而帮助模型优化其决策过程。
RLHF的训练过程通常包括以下几个关键步骤:
RLHF在大模型技术中发挥着重要作用,具体体现在以下几个方面:
大模型的模型压缩技术通过去除冗余、降低精度和知识迁移等手段,实现了模型大小的减小和性能的优化。在实际应用中具有显著的作用:
模型压缩的主要目标是在保持模型性能的同时降低模型大小,以满足计算设备的限制和提高模型的部署速度。其核心技术包括权重裁剪、量化和知识蒸馏等。
通过去除模型中不重要的权重来减小模型大小。这些不重要的权重对模型的性能贡献较小,通过裁剪可以降低模型的冗余度。
将模型中的参数从浮点数转换为定点数或低精度浮点数,减小模型的体积。由于定点数和低精度浮点数占用的空间更小,因此可以有效降低模型的存储和计算需求。
通过训练一个小模型来模拟大模型的性能。大模型作为教师模型,提供软标签或输出分布给小模型(学生模型)学习,使学生模型能够在保持性能的同时,拥有更小的模型大小。
大模型的多模态融合技术通过结合不同模态的数据,增强了模型的感知和理解能力,提升了性能和应用范围。多模态融合技术在实际应用中发挥着重要作用:
多模态融合技术旨在结合来自不同模态(如文本、图像、音频等)的数据,以提供更全面、准确的信息。其原理在于,不同模态的数据往往包含互补的信息,通过将这些信息融合,可以增强模型的感知和理解能力。在融合过程中,关键技术包括数据预处理、特征提取和融合算法。首先,需要对不同模态的数据进行预处理,包括清洗、标注和对齐等操作,以确保数据的质量和一致性。然后,利用特征提取技术,如卷积神经网络(CNN)用于图像特征提取,循环神经网络(RNN)用于文本特征提取等,从各个模态的数据中提取关键信息。最后,通过融合算法将这些特征进行融合,以生成更全面的表示。
说到底,“钞能力”才是大模型的核心!大模型需要很多资源,会耗费大量的算力、人力、电力。首先,大模型的训练需要高性能计算机集群的支持,这些计算机集群需要配备大量的CPU、GPU或TPU等处理器,以进行大规模的并行计算。而这样的计算资源往往是非常昂贵的,需要大量的资金投入。同时,大模型的训练时间也非常长,可能需要数周甚至数月的时间,这也需要足够的算力支持。因此,没有足够的财力支持,很难承担这样大规模的算力需求。其次,大模型的训练需要大量的数据科学家、工程师和研究人员,他们需要对算法、模型、数据等方面有深入的了解和熟练的技能。而这些专业人才往往也是高薪聘请的,需要大量的人力成本。同时,大模型的研发还需要团队之间的紧密合作和高效沟通,这也需要人力资源的支持。最后,高性能计算机集群需要消耗大量的电力,而电力的成本也是不可忽视的。尤其是在大规模训练中,电力成本可能会占据相当一部分的训练成本。因此,没有足够的财力支持,也很难承担这样大规模的电力消耗。总之,基于规模定律的Transformer等技术为我们开启的大模型时代,但同样重要的是,Money决定了大模型能走多远!没有足够的财力支持,很难承担大模型训练所需的算力、人力和电力等方面的资源需求。