
IT咨询顾问的关键抓手-DeepSeek+企业架构-快速的熟悉和洞察一个新的行业
在生成式AI技术蓬勃发展的今天,大语言模型已成为企业智能化转型和个人效率提升的核心驱动力。作为国产大模型的优秀代表,DeepSeek凭借其卓越的中文语义理解能力和开发者友好的API生态,正在成为构建本土化AI应用的首选平台。本文将以Spring Boot3+Vue2全栈技术为基础,手把手带你打造一个具备以下特性的AI对话系统:实时流式对话交互体验;支持Markdown代码块/表格的专业级内容渲染;前端安全防护与响应式界面设计;高扩展性的API接入架构。
DeepSeekService 是一个核心服务类,主要负责处理与 ollama 的通信和数据处理。整个服务采用响应式编程模式(Flux),实现非阻塞式处理,提高系统性能。同时通过日志记录,确保服务的可靠性和稳定性。
开发采用 flex 布局、基于 WebSocket 进行实时通信、针对不同类型的消息等。采用 flex 布局,包含消息显示区、输入区和连接状态提示区。消息显示区支持滚动,并能自动定位到最新消息;输入区集成了输入框和发送按钮,提供便捷的交互体验;状态区则实时显示 WebSocket 连接状态,让用户随时掌握通信情况;基于 WebSocket 进行实时通信,initWebSocket 方法负责建立连接,并完整管理连接生命周期,包括连接成功、消息接收、错误处理和断线重连等。消息的发送与接收分别通过 sendMessage 和 appendMessage 方法处理,并支持区分用户消息和机器人回复。此外,组件使用 marked 库渲染 Markdown 格式,并结合 DOMPurify 进行 XSS 过滤,确保消息展示安全可靠;针对不同类型的消息(用户消息、机器人回复、错误提示)定义了个性化样式,并利用 :deep 选择器为 Markdown 内容提供精细化样式支持,包括标题、代码块、表格、列表等,确保内容展示既专业又美观。整体设计注重用户体验,不仅优化了交互细节,还完善了状态提示和错误处理机制,使聊天体验更加流畅。
上图显示了项目运行时的日志信息,记录了 WebSocket 连接和 Ollama 的交互过程,包括消息接收和响应的详细日志。
上图为 AI 对话系统的用户界面截图。整个界面支持 Markdown 格式的渲染,使得回答内容层次分明,易于阅读。
关注gzh后端码匠,回复"DeepSeek"消息即可获取完整源码。
通过本文的实践,我们成功搭建了一个基于 Spring Boot 和 Vue 的 AI 对话系统。该系统具备以下特点:
这一系统不仅能够用于智能客服、在线问答等场景,还能结合大模型能力,进一步提升智能化水平。未来,我们可以继续优化性能,增强上下文理解能力,并探索更多创新应用场景,让 AI 交互变得更加智能自然。
IT咨询顾问的关键抓手-DeepSeek+企业架构-快速的熟悉和洞察一个新的行业
基于Ollama与AnythingLLM的DeepSeek-R1本地RAG应用实践
模型引擎的技术债务?一个Deepseek三种API引发的连锁反应
Windows 上快速部署.NET Core Web 项目
.NET开发者看过来!DeepSeek SDK 集成
LangChain4j实战-Java AI应用开源框架之LangChain4j和Spring AI
后端开发人员Docker快速入门
生产级满血版Deepseek-r1 671B部署实例
生产级满血版Deepseek-r1 671B部署后续问题、调优以及压测