所有文章 > AI驱动 > 神经网络算法 - 一文搞懂Transformer

神经网络算法 - 一文搞懂Transformer

本文将从Transformer的本质、Transformer的原理Transformer架构改进三个方面,带您一文搞懂Transformer。

一、Transformer的本质

Transformer架构:主要由输入部分(输入输出嵌入与位置编码)、多层编码器、多层解码器以及输出部分(输出线性层与Softmax)四大部分组成。

Transformer架构

  • 输入部分:
  • 源文本嵌入层:将源文本中的词汇数字表示转换为向量表示,捕捉词汇间的关系。
  • 位置编码器:为输入序列的每个位置生成位置向量,以便模型能够理解序列中的位置信息。
  • 目标文本嵌入层(在解码器中使用):将目标文本中的词汇数字表示转换为向量表示。
  • 编码器部分:
  • 由N个编码器层堆叠而成。
  • 每个编码器层由两个子层连接结构组成:第一个子层是一个多头自注意力子层,第二个子层是一个前馈全连接子层。每个子层后都接有一个规范化层和一个残差连接。
  • 解码器部分:
  • 由N个解码器层堆叠而成。
  • 每个解码器层由三个子层连接结构组成:第一个子层是一个带掩码的多头自注意力子层,第二个子层是一个多头注意力子层(编码器到解码器),第三个子层是一个前馈全连接子层。每个子层后都接有一个规范化层和一个残差连接。
  • 输出部分:
  • 线性层:将解码器输出的向量转换为最终的输出维度。
  • Softmax层:将线性层的输出转换为概率分布,以便进行最终的预测。

Encoder-Decoder(编码器-解码器):左边是N个编码器,右边是N个解码器,Transformer中的N为6。

Encoder-Decoder(编码器-解码器)

  • Encoder编码器:
  • Transformer中的编码器部分一共6个相同的编码器层组成。每个编码器层都有两个子层,即多头自注意力层(Multi-Head Attention)层和逐位置的前馈神经网络(Position-wise Feed-Forward Network)。在每个子层后面都有残差连接(图中的虚线)和层归一化(LayerNorm)操作,二者合起来称为Add&Norm操作。

Encoder(编码器)架构

  • Decoder解码器:
  • Transformer中的解码器部分同样一共6个相同的解码器层组成。每个解码器层都有三个子层,掩蔽自注意力层(Masked Self-Attention)、Encoder-Decoder注意力层、逐位置的前馈神经网络同样,在每个子层后面都有残差连接(图中的虚线)和层归一化(LayerNorm)操作,二者合起来称为Add&Norm操作。

Decoder(解码器)架构

二、Transformer的原理

Transformer工作原理

Multi-Head Attention(多头注意力):它允许模型同时关注来自不同位置的信息。通过分割原始的输入向量到多个头(head),每个头都能独立地学习不同的注意力权重,从而增强模型对输入序列中不同部分的关注能力。

Multi-Head Attention(多头注意力)

  1. 输入线性变换:对于输入的Query(查询)、Key(键)和Value(值)向量,首先通过线性变换将它们映射到不同的子空间。这些线性变换的参数是模型需要学习的。
  2. 分割多头:经过线性变换后,Query、Key和Value向量被分割成多个头。每个头都会独立地进行注意力计算。
  3. 缩放点积注意力:在每个头内部,使用缩放点积注意力来计算Query和Key之间的注意力分数。这个分数决定了在生成输出时,模型应该关注Value向量的部分。
  4. 注意力权重应用:将计算出的注意力权重应用于Value向量,得到加权的中间输出。这个过程可以理解为根据注意力权重对输入信息进行筛选和聚焦。
  5. 拼接和线性变换:将所有头的加权输出拼接在一起,然后通过一个线性变换得到最终的Multi-Head Attention输出。

Scaled Dot-Product Attention(缩放点积注意力):它是Transformer模型中多头注意力机制的一个关键组成部分。

Scaled Dot-Product Attention(缩放点积注意力)

  • Query、Key和Value矩阵
    • Query矩阵(Q):表示当前的关注点或信息需求,用于与Key矩阵进行匹配。
    • Key矩阵(K):包含输入序列中各个位置的标识信息,用于被Query矩阵查询匹配。
    • Value矩阵(V):存储了与Key矩阵相对应的实际值或信息内容,当Query与某个Key匹配时,相应的Value将被用来计算输出。
  • 点积计算
    • 通过计算Query矩阵和Key矩阵之间的点积(即对应元素相乘后求和),来衡量Query与每个Key之间的相似度或匹配程度。
  • 缩放因子
    • 由于点积操作的结果可能非常大,尤其是在输入维度较高的情况下,这可能导致softmax函数在计算注意力权重时进入饱和区。为了避免这个问题,缩放点积注意力引入了一个缩放因子,通常是输入维度的平方根。点积结果除以这个缩放因子,可以使得softmax函数的输入保持在一个合理的范围内。
  • Softmax函数
    • 将缩放后的点积结果输入到softmax函数中,计算每个Key相对于Query的注意力权重。Softmax函数将原始得分转换为概率分布,使得所有Key的注意力权重之和为1。
  • 加权求和
    • 使用计算出的注意力权重对Value矩阵进行加权求和,得到最终的输出。这个过程根据注意力权重的大小,将更多的关注放在与Query更匹配的Value上。

三、Transformer架构改进

BERT:BERT是一种基于Transformer的预训练语言模型,它的最大创新之处在于引入了双向Transformer编码器,这使得模型可以同时考虑输入序列的前后上下文信息。

BERT架构

  1. 输入层(Embedding)
    • Token Embeddings:将单词或子词转换为固定维度的向量
    • Segment Embeddings:用于区分句子对中的不同句子。
    • Position Embeddings:由于Transformer模型本身不具备处理序列顺序的能力,所以需要加入位置嵌入来提供序列中单词的位置信息。
  2. 编码层(Transformer Encoder):BERT模型使用双向Transformer编码器进行编码。
  3. 输出层(Pre-trained Task-specific Layers)
    • MLM输出层:用于预测被掩码(masked)的单词。在训练阶段,模型会随机遮盖输入序列中的部分单词,并尝试根据上下文预测这些单词。
    • NSP输出层:用于判断两个句子是否为连续的句子对。在训练阶段,模型会接收成对的句子作为输入,并尝试预测第二个句子是否是第一个句子的后续句子。

GPT:GPT也是一种基于Transformer的预训练语言模型,它的最大创新之处在于使用了单向Transformer编码器,这使得模型可以更好地捕捉输入序列的上下文信息。

GPT架构

  1. 输入层(Input Embedding)
    • 将输入的单词或符号转换为固定维度的向量表示。
    • 可以包括词嵌入、位置嵌入等,以提供单词的语义信息和位置信息。
  2. 编码层(Transformer Encoder):GPT模型使用单向Transformer编码器进行编码和生成。
  3. 输出层(Output Linear and Softmax)
    • 线性输出层将最后一个Transformer Decoder Block的输出转换为词汇表大小的向量。
    • Softmax函数将输出向量转换为概率分布,以便进行词汇选择或生成下一个单词。

本文章转载微信公众号@架构师带你玩转AI