所有文章 > 当前标签:TensorFlow

开源| 伯克利AI分布式框架Ray,兼容TensorFlow、PyTorch与MXNet
2025/03/03
不久之前,机器之心推荐了一篇论文,介绍 UC Berkeley 研究员发布的分布式系统 Ray(参见:学界 | Michael Jodan 等人提出新型分布式框架 Ray:实时动态学习的开端》。开发者称,Ray 专门为人工智能应用设计,通过...

如何用TensorFlow训练模型:从入门到部署
【日积月累】
TensorFlow是一个强大的深度学习框架,本文将详细介绍如何使用TensorFlow训练模型,涵盖数据准备、模型构建、训练过程、模型评估以及模型导出等关键步骤。从一个简单的例子开始,逐步深入,帮助读者掌握TensorFlow模型训练的完整流程。文中将介绍如何使用TensorFlow内置的数据集或自定义数据加载方法,如何选择合适的模型架构和优化器,如何监控训练过程以及如何评估模型性能。此外,还会讲解如何将训练好的模型导出为可部署的格式,例如用于移动设备的tflite格式,方便读者将模型应用到实际场景中。无论你是深度学习的初学者还是有一定经验的开发者,本文都将提供有价值的指导和参考。
2025/02/27

深度学习框架:PyTorch、TensorFlow和Keras全面解析与应用
【日积月累】
本文全面解析了深度学习框架PyTorch、TensorFlow和Keras的特点、应用场景,并提供了框架选择指南。PyTorch以动态图和灵活性著称,适合学术研究和快速实验;TensorFlow以静态图和丰富的API闻名,广泛用于工业生产环境;Keras以简洁的高级API受到初学者欢迎。文章还探讨了深度学习框架的发展趋势,包括全场景支持、易用性与性能统一、大规模分布式支持等。
2025/01/26