机器学习中的特征工程详解
2025/02/27
本文深入探讨机器学习中至关重要的特征工程。特征工程是将原始数据转换为更有效特征的过程,它直接影响模型性能。我们将涵盖数据清洗、特征构建、特征变换和特征选择等关键步骤,并结合Titanic数据集进行实践演示。我们将学习如何处理缺失值、异常值,如何创建新的特征,以及如何选择最有效的特征来提高模型的预测能力。通过学习这些技术,你可以构建更强大、更准确的机器学习模型,提升模型的泛化能力和预测精度。特征工程是数据科学项目成功的关键环节,掌握这些技巧能让你在实际应用中游刃有余。