所有文章 > AI驱动 > GLM-4-Flash免费:在线微调GLM-4-Flash + Function Calling搭建法律知识库

GLM-4-Flash免费:在线微调GLM-4-Flash + Function Calling搭建法律知识库

随着法律行业的数字化转型加速,构建一个智能化、高效能的法律知识库成为了提升法律工作效率、辅助法律决策的重要一环。GLM-4-Flash,作为一款优秀的大语言模型(LLM),通过其提供的在线微调服务,为法律知识库的搭建提供了灵活性和高效性。

本文将探讨GLM-4-Flash如何通过在线微调与Function Calling技术的结合,大语言模型GLM-4-Flash在法律知识库搭建中发挥关键作用。

一、GLM-4-Flash模型免费开放

GLM-4-Flash模型的免费开放尤为引人注目,为研究者与开发者提供了稀缺的算力资源,方便大家向更广泛、更深入的应用场景迈进。

GLM-4-Flash成为智谱AI首个免费API,零成本调用大模型。

二、在线微调GLM-4-Flash模型

传统的本地私有化部署,需要将大语言模型LLM(GLM-4-9B)高效地加载到系统中。比如,我们可以选择Xinference这类推理框架,它提供了灵活、高效的模型加载与推理能力。

与本地私有化部署大语言模型(GLM-4-9B)不同,GLM-4-Flash支持通过API接口进行在线微调。这种方式不仅简化了模型部署的复杂度,还使得模型能够实时适应法律领域的新知识和变化。

GLM-4-Flash的API接入

首先,需要注册并获取GLM-4-Flash的API访问权限,确保能够安全、稳定地接入模型服务。

法律领域特定数据集准备

收集并整理法律领域的特定数据集,包括最新的法律条文、案例判决、法律问题等,用于模型的在线微调。

GLM-4-Flash在线LoRA微调

通过GLM-4-Flash提供的在线微调界面,选择LoRA微调,设置,将准备好的数据集上传至服务器,并启动微调过程。在微调过程中,模型将学习法律领域的特定知识和模式,从而提升其在该领域的表现。

三、Function Calling技术结合法律案件检索

在法律知识库的实际应用中,Function Calling技术能够实现模型与用户之间的智能交互。通过定义特定的Function Calling接口,模型可以根据用户的问题自动检索相关法律案件,并给出针对性的回答。

接口定义

在GLM-4-Flash模型中定义Function Calling接口,用于接收用户输入的法律问题,并触发案件检索功能。

@app.route('/query_legal_case', methods=['POST'])  
def query_legal_case():
# 接收用户输入的法律问题
user_question = request.json.get('question')

# 调用GLM-4-Flash模型或其他服务进行案件检索(这里简化为直接调用函数)
retrieved_cases = search_legal_cases(user_question)

# 使用GLM-4-Flash或其他NLP技术生成回答
answer = generate_answer(retrieved_cases, user_question)

# 返回回答
return jsonify({'answer': answer})

# 这里需要实现search_legal_cases和generate_answer函数
# ...

if __name__ == '__main__':
app.run(debug=True)

案件库集成

将法律案件数据库与GLM-4-Flash模型系统集成,确保模型能够实时访问并检索相关案例。

def search_legal_cases(question):  
# 连接数据库
db_connection = get_database_connection()

# 基于问题内容构建查询(这里简化为示例)
query = build_query_from_question(question)

# 执行查询并获取结果
cases = db_connection.execute_query(query)

# 返回检索到的案例列表
return cases

# 这里需要实现get_database_connection和build_query_from_question函数
# ...

智能回答

在检索到相关法律案件后,GLM-4-Flash模型将结合案件内容和用户问题进行分析,生成准确、全面的回答。这些回答可以直接呈现给用户,帮助他们更好地理解法律问题和做出决策。

def generate_answer(cases, question):  
# 对每个案例进行分析,提取关键信息
relevant_info = []
for case in cases:
info = extract_relevant_info(case, question)
relevant_info.append(info)

# 使用GLM-4-Flash对提取的信息和用户问题进行分析
# 这里简化为直接使用某个函数来生成回答
answer = synthesize_answer(relevant_info, question)

return answer

# 这里需要实现extract_relevant_info和synthesize_answer函数
# 注意:synthesize_answer可能需要与GLM-4-Flash进行交互
# ...

安全性与隐私保护

在利用GLM-4-Flash进行在线微调和Function Calling时,安全性和隐私保护是不可忽视的重要环节。

  • 数据加密:确保在数据传输和存储过程中采用加密技术,保护用户数据和法律案件信息的机密性。
  • 访问控制:实施严格的访问控制策略,限制对模型服务和案件数据库的访问权限,防止未经授权的访问和数据泄露。
  • 合规性审查:定期对模型服务和案件数据库进行合规性审查,确保符合相关法律法规的要求。

智谱BigModel大模型开发平台免费⽀持2个并发,更多的是⽀持个⼈使⽤,如果需要使⽤API提供服务欢迎使⽤其他模型(GLM-4系列)。

点击阅读原文,赶快行动起来,结合GLM-4-Flash模型搭建属于自己的行业知识库。

文章转自微信公众号@架构师带你玩转AI

#你可能也喜欢这些API文章!