2024年您产品必备的10大AI API推荐
AI编程 - OpenAI API详解
OpenAI Api 官方地址为:https://platform.openai.com/docs/api-reference,常用的 OpenAI Api 接口总共分为 4 类:对话类、私有化模型训练类、通用类、图片 & 音频类,其中对话类与私有化模型训练类是最常用的,接下来我们来一一讲解。
一、对话类接口
这类是最常用也是最核心的接口,用于人机对话。对话类接口又细分为:Chat、Completions。Chat 是指多轮对话;Completions 是指单轮对话,主要用于一次性生成一篇文章等,不具备多次对话交互的能力。
Chat(多轮对话)
1. 请求地址
POST
https://api.openai.com/v1/chat/completions
2. 请求参数
请求参数整体为 JSON 格式,详细含义如下:
3. 返回参数
Request:
curl "https://api.openai.com/v1/chat/completions" \
-H "Content-Type: application/json" \
// 这里要替换成你的API Key
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello!"}]
}'
Response:
{
// GPT响应的唯一表示
"id": "chatcmpl-123",
// 表示接口类型
"object": "chat.completion",
// 创建的unix时间戳
"created": 1677652288,
// 模型生成的内容
"choices": [{
// 序号
"index": 0,
// 生成内容
"message": {
"role": "assistant",
"content": "\n\nHello there, how may I assist you today?",
},
/*
停止生成原因:
stop,正常结束或者遇到停止序列而停止
length,生成内容达到了最大长度限制
function_call,需要调用函数而停止
content_filter,内容被过滤而停止
*/
"finish_reason": "stop"
}],
// 统计数据
"usage": {
// 传入数据消耗的token数
"prompt_tokens": 9,
// GPT生成内容的Token数
"completion_tokens": 12,
// 所有的Token数
"total_tokens": 21
}
}
4. 代码示例
Demo 地址:python-gpt-course/course/openai_api/chat.py
运行示例:python course openai_api chat
Golang:
Demo 地址:golang-gpt-course/internal/openai_api/chat.go
运行示例:./start openai_api chat
Completions(单轮对话)
1. 请求地址
POST
https://api.openai.com/v1/completions
2. 请求参数
3. 返回参数
Request:
curl "https://api.openai.com/v1/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "text-davinci-003",
"prompt": "Say this is a test",
"max_tokens": 7,
"temperature": 0
}'
Reponse:
{
"id": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7",
"object": "text_completion",
"created": 1589478378,
"model": "text-davinci-003",
"choices": [{
"text": "\n\nThis is indeed a test",
"index": 0,
"logprobs": null,
"finish_reason": "length"
}],
"usage": {
"prompt_tokens": 5,
"completion_tokens": 7,
"total_tokens": 12
}
}
4. 代码示例
Python:
Demo 地址:python-gpt-course/course/openai_api/completion.py
运行示例:python course openai_api completion
Golang:
Demo 地址:golang-gpt-course/internal/openai_api/completion.go
运行示例:./start openai_api completion
二、私有化模型构建类
这类是用于构建私有化模型的相关接口。私有化模型构建分为两种方式:Embeddings、Fine-tunes。两个模型这里简单的介绍下,:
Embeddings,以改变上下文的方式来打造私有化模型,该方式不对 GPT 本身的模型进行调整。
Fine-tunes,基于 GPT 的模型再进行额外的训练,会对 GPT 模型本身的参数进行微调。Fine-tunes 对模型训练的专业技能要求更高
PS:在后续的课程中还会详细讲解这两种方式,所以你可以简单看下相关接口,也可以等到学习私有化模型构建的时候再回过头来看
Embeddings
1. 请求地址
POST
https://api.openai.com/v1/embeddings
2. 请求参数
3. 返回参数
Request
curl "https://api.openai.com/v1/embeddings" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"input": "The food was delicious and the waiter...",
"model": "text-embedding-ada-002"
}
Response
{
"object": "list",
"data": [
{
"object": "embedding",
// 向量化数据
"embedding": [
0.0023064255,
-0.009327292,
.... (1536 floats total for ada-002)
-0.0028842222,
],
"index": 0
}
],
"model": "text-embedding-ada-002",
"usage": {
"prompt_tokens": 8,
"total_tokens": 8
}
}
4. 代码示例
Python:
Demo 地址:python-gpt-course/course/openai_api/embedding.py
运行示例:python course openai_api embedding
Golang:
Demo 地址:golang-gpt-course/internal/openai_api/embedding.go
运行示例:./start openai_api embedding
Fine-tunings
由于 Fine-tunings 的接口比较多,这里只会详细介绍创建 Fine-tunning 的接口,其他会简要介绍。大多数场景下,都会“离线”完成模型训练,然后“在线”实时调用训练后的模型。而“离线”训练更多的是借助 OpenAI 的官方工具,具体的在后续课程中我们会进一步讲解。
另外,Fine-tunings 的使用需要有一定的模型训练的技术基础以及经验要求,比如你要懂:训练集、测试集、验证集、损失函数、梯度下降等等。其实对于大多数场景来说,Embeddings 的方式会更加容易落地。
1. 请求地址
POST
https://api.openai.com/v1/fine-tunes
2. 请求参数
3. 返回参数
Request
curl "https://api.openai.com/v1/fine-tunes" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
// 训练集的FileID
"training_file": "file-XGinujblHPwGLSztz8cPS8XY"
}'
Response
{
// 训练模型的ID
"id": "ft-AF1WoRqd3aJAHsqc9NY7iL8F",
"object": "fine-tune",
"model": "curie",
"created_at": 1614807352,
// 模型训练过程中的一些事件
"events": [
{
"object": "fine-tune-event",
"created_at": 1614807352,
"level": "info",
"message": "Job enqueued. Waiting for jobs ahead to complete. Queue number: 0."
}
],
"fine_tuned_model": null,
"hyperparams": {
"batch_size": 4,
"learning_rate_multiplier": 0.1,
"n_epochs": 4,
"prompt_loss_weight": 0.1,
},
"organization_id": "org-...",
"result_files": [],
"status": "pending",
"validation_files": [],
"training_files": [
{
"id": "file-XGinujblHPwGLSztz8cPS8XY",
"object": "file",
"bytes": 1547276,
"created_at": 1610062281,
"filename": "my-data-train.jsonl",
"purpose": "fine-tune-train"
}
],
"updated_at": 1614807352,
}
4. 其他接口
获取 Fine-tunes 训练的模型列表
GET
https://api.openai.com/v1/fine-tunes
获取某一个模型的详细信息
GET
https://api.openai.com/v1/fine-tunes/{fine_tune_id}
取消正在训练的模型
POST
https://api.openai.com/v1/fine-tunes/{fine_tune_id}/cancel
获取某一个模型训练过程中的事件
GET
https://api.openai.com/v1/fine-tunes/{fine_tune_id}/events
删除一个模型
DELETE
https://api.openai.com/v1/models/{model}
三、通用类
Models(获取 GPT 可用模型列表)
1. 获取 Models 列表
请求地址
GET
https://api.openai.com/v1/models
Request
curl "https://api.openai.com/v1/models" \
-H "Authorization: Bearer $OPENAI_API_KEY"
Repsonse
{
"data": [
{
// GPT模型ID
"id": "model-id-0",
"object": "model",
"owned_by": "organization-owner",
// 权限
"permission": [...]
},
{
"id": "model-id-1",
"object": "model",
"owned_by": "organization-owner",
"permission": [...]
},
{
"id": "model-id-2",
"object": "model",
"owned_by": "openai",
"permission": [...]
},
],
"object": "list"
}
2. 获取 Models 详情
请求地址
GET
https://api.openai.com/v1/models/{model}
Request
curl "https://api.openai.com/v1/models/text-davinci-003" \
-H "Authorization: Bearer $OPENAI_API_KEY"
Response
{
"id": "text-davinci-003",
"object": "model",
"owned_by": "openai",
"permission": [...]
}
Files(上传文件到 GPT)
主要用于 Fine-tunings 的训练数据集、验证数据集的上传
1. 上传文件
Request
curl "https://api.openai.com/v1/files" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
// 文件用途
-F purpose="fine-tune" \
-F file="@mydata.jsonl"
Response
{
"id": "file-XjGxS3KTG0uNmNOK362iJua3",
"object": "file",
"bytes": 140,
"created_at": 1613779121,
"filename": "mydata.jsonl",
"purpose": "fine-tune"
}
2. 其他接口
获取文件列表
GET
https://api.openai.com/v1/files
获取单个文件描述信息
GET
https://api.openai.com/v1/files/{file_id}
获取单个文件内容
GET
https://api.openai.com/v1/files/{file_id}/content
四、图片 & 音频 类
Images
1. 文生图
文字描述图,GPT 来生成
1. 请求地址
POST
https://api.openai.com/v1/images/generations
2. 请求参数
3. 返回参数
Request
curl "https://api.openai.com/v1/images/generations" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"prompt": "A cute baby sea otter",
"n": 2,
"size": "1024x1024"
}'
Response
{
"created": 1589478378,
"data": [
{
"url": "https://..."
},
{
"url": "https://..."
}
]
}
2. 编辑图
上传图片,并描述修改方式,GPT 生成新图
1. 请求地址
POST
https://api.openai.com/v1/images/edits
2. 请求参数
3. 返回参数
Request
curl "https://api.openai.com/v1/images/edits" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-F image="@otter.png" \
-F mask="@mask.png" \
-F prompt="A cute baby sea otter wearing a beret" \
-F n=2 \
-F size="1024x1024"
Response
{
"created": 1589478378,
"data": [
{
"url": "https://..."
},
{
"url": "https://..."
}
]
}
3. 图变体
4. 请求地址
POST
https://api.openai.com/v1/images/variations
2. 请求参数
3. 返回参数
Request
curl "https://api.openai.com/v1/images/variations" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-F image="@otter.png" \
-F n=2 \
-F size="1024x1024"
Response
{
"created": 1589478378,
"data": [
{
"url": "https://..."
},
{
"url": "https://..."
}
]
}
Audio(语音转文字)
将语音转为文字
1. 请求地址
POST
https://api.openai.com/v1/audio/transcriptions
2. 请求参数
3. 返回参数
Request
curl "https://api.openai.com/v1/audio/transcriptions" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: multipart/form-data" \
-F file="@/path/to/file/audio.mp3" \
-F model="whisper-1"
Response
{
"text": "Imagine the wildest idea that you've ever had, and you're curious about how it might scale to something that's a 100, a 1,000 times bigger. This is a place where you can get to do that."
}
本文章转载微信公众号@AI老张